Code: 20BS1401

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2024

ELECTROMAGNETIC FIELD THEORY (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks			
		UNIT-I			IVIAIKS			
1	a)	State and explain Coulombs law of force	L2	CO1	7 M			
		between two charge points.						
	b)	A point charge Q ₁ is 300 μC is located at	L3	CO2	7 M			
		(1,-1, 3) m and experiences a force $\overline{F} = 8\overline{a_x}$ -						
		$8 \overline{a_y} - 4\overline{a_z}$ N due to other point charge Q_2 at						
		$(3,-3,2)$ m. Calculate the other Charge Q_2 .						
OR								
2	a)	Brief out Electric flux density, EFI,	L3	CO2	7 M			
		divergence, potential gradient and work						
		done in electro statics.						
	b)	Discuss and derive the Expression for point	L2	CO2	7 M			
		form of Gauss's law.						

		UNIT-II					
3	a)	Discuss and derive the Laplace and	L2	CO1	7 M		
		Poisson's Equations of Electro statics.					
	b)	Solve the Expression for Torque on electric	L3	CO2	7 M		
		dipole in Electric Field.					
OR							
4	a)	Demonstrate the Expression for E due to an	L3	CO2	7 M		
		electric dipole.					
	b)	Obtain boundary conditions between the	L3	CO3	7 M		
		dielectric and dielectric.					
	ı	UNIT-III		T			
5	a)	Analyze the Expression for the Magnetic	L4	CO4	7 M		
		Field Intensity due to a straight current					
		carrying wire.					
	b)	State and Prove the Biot-Savart's law.	L3	CO4	7 M		
OR							
6	a)	State and solve Ampere circuital law.	L3	CO4	7 M		
	b)	The Magnetic Field Intensity \overline{H} due to a	L4	CO4	7 M		
		infinite current carrying sheet, Assume a					
		current \bar{k} in xz-plane, Prove that, $\bar{H} = \frac{k_y}{2} \bar{a}_n$					
		UNIT-IV					
7	a)	Demonstrate Lorentz law of force.	L3	CO1	7 M		
	b)	Construct the expression for the inductance	L3	CO4	7 M		
		of a solenoid.					
		OR					

8	a)	Obtain the expression for the inductance of	L4	CO4	7 M				
		a toroidal ring.							
	b)	Calculate the inductance of a solenoid of	L3	CO4	7 M				
		200 turns wound together tightly on a							
		cylindrical tube of 6cm in dia. The length of							
		the tube is 60cm and solenoid is in air.							
		UNIT-V							
9	a)	Explain Faraday's law in its integral and	L2	CO5	7 M				
		differential forms.							
	b)	Discuss about the Maxwell's equations for	L2	CO5	7 M				
		time varying fields.							
OR									
10	a)	Explain displacement current.	L4	CO5	7 M				
	b)	In a material for which $\sigma = 5.0 (\Omega m)^{-1}$	L3	CO5	7 M				
		and $\sigma_r = 1$ the electric field intensity is							
		$E = 250 \sin(10^{10}t)$ V/m. Calculate the							
		(i) conduction current density							
		(ii) displacement current density							
		(iii) the frequency at which they have equal							
		magnitudes.							